Denmark Generation Development

Soren Karkov
05 July 2010

The views expressed in this presentation are those of the presenter and do not necessarily represent those of the Asian Development Bank.
Offshore

Wind Turbines
- Wind turbine market situation
- Project size - and turbine size - constraints?
- Modern turbine capabilities - wind farms as power plants

Grid Integration Issues
- What are the technical grid challenges?
- How can they be handled?
- Institutional / administrative / economic obstacles?
- How can they be handled?
Growth in size of commercial wind turbines
W turbine development: Cost

<table>
<thead>
<tr>
<th>Year</th>
<th>Rotor (Meter)</th>
<th>KW</th>
<th>Total Cost</th>
<th>Cost/kW</th>
<th>MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>10</td>
<td>25</td>
<td>$65</td>
<td>$2,600</td>
<td>45</td>
</tr>
<tr>
<td>1985</td>
<td>17</td>
<td>100</td>
<td>$165</td>
<td>$1,650</td>
<td>220</td>
</tr>
<tr>
<td>1990</td>
<td>27</td>
<td>225</td>
<td>$300</td>
<td>$1,333</td>
<td>550</td>
</tr>
<tr>
<td>1996</td>
<td>40</td>
<td>550</td>
<td>$580</td>
<td>$1,050</td>
<td>1,480</td>
</tr>
<tr>
<td>1999</td>
<td>50</td>
<td>750</td>
<td>$730</td>
<td>$950</td>
<td>2,200</td>
</tr>
<tr>
<td>2004</td>
<td>77</td>
<td>1,500</td>
<td>$1,200</td>
<td>$800</td>
<td>5,600</td>
</tr>
</tbody>
</table>
Offshore
Denmark 1985

18 large power plants
13 smaller distributed power plants
Small wind contribution 47 MW
Denmark 2009

18 large power plants
> 300 distributed power plants
Large wind contribution
3,465 MW = 30%
Genaration penetration

Small penetration levels (5%): No major impacts, no need for heavy grid code requirements. Load following & regulation impacts are small.

At increasing (10-20%) penetration levels, small but measurable increase in ramping requirement can generally be met by existing generation with modest cost increase.

At higher (>30% levels) minimum load problems may appear:
- Large markets (energy, ancillary services, price responsive load)
- More flexible generation options
- Larger balancing areas and stronger interconnections
- Curtailment
- Energy storage (large hydro & pumped storage)
Safeguarding life, property and the environment

www.dnv.com
Findings and Discussions:

1. Project Development barriers
 - Technology selection (i.e. 2 vs. 3 blade turbines)
 - Size of equipment, like weights, transportation and cranes
 - Life span of the equipment
 - Equipment behavior under intensive climate conditions, i.e. extreme winds and temperatures.
 - Adaptation of technology to project site and local working conditions (which have lead to improvement in designs and performances)
 - Harvesting depends on wind speed and swept area

2. Tools:
 - Standards for common problems through common cooperation of developers, manufacturers and utilities in different countries.
 - Backbone available for balancing the system.
Findings and Discussions:

3. Penetration into the grid
- Penetration proportional to smooth system planning, especially grid development and assignment of responsibilities among stakeholders.
- Transmission is a public good: not everybody can go through
- Who is assuming the costs of TL implementation is a barrier
- New developments i.e. permanent magnet generator + frequency converter guarantees a 100% quality output of electricity.
- Planning for penetration shall look into utility area of influence first rather than the national context only.
- Difficult to indentify generation by sources
- ADB as facilitator to coordinate the regions input to discussion, harmonization's, grid codes, standard PPAs, standard
Findings and Discussions:

ADB as facilitator

- to coordinate the regions input to discussion
- harmonization's
- grid codes
- standard PPAs
- Standard Purchase contracts incl O&M